Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574388

RESUMO

INTRODUCTION: Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically engineered marmosets that carry knock-in (KI) point mutations in the presenilin 1 (PSEN1) gene that can be studied from birth throughout lifespan. METHODS: CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1. Founders and their germline offspring are comprehensively studied longitudinally using non-invasive measures including behavior, biomarkers, neuroimaging, and multiomics signatures. RESULTS: Prior to adulthood, increases in plasma amyloid beta were observed in PSEN1 mutation carriers relative to non-carriers. Analysis of brain revealed alterations in several enzyme-substrate interactions within the gamma secretase complex prior to adulthood. DISCUSSION: Marmosets carrying KI point mutations in PSEN1 provide the opportunity to study the earliest primate-specific mechanisms that contribute to the molecular and cellular root causes of AD onset and progression. HIGHLIGHTS: We report the successful generation of genetically engineered marmosets harboring knock-in point mutations in the PSEN1 gene. PSEN1 marmosets and their germline offspring recapitulate the early emergence of AD-related biomarkers. Studies as early in life as possible in PSEN1 marmosets will enable the identification of primate-specific mechanisms that drive disease progression.

2.
Nat Commun ; 15(1): 2519, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514616

RESUMO

Consensus is rapidly building to support a role for the cerebellum beyond motor function, but its contributions to non-motor learning remain poorly understood. Here, we provide behavioral, anatomical and computational evidence to demonstrate a causal role for the primate posterior lateral cerebellum in learning new visuomotor associations. Reversible inactivation of the posterior lateral cerebellum of male monkeys impeded the learning of new visuomotor associations, but had no effect on movement parameters, or on well-practiced performance of the same task. Using retrograde transneuronal transport of rabies virus, we identified a distinct cerebro-cerebellar network linking Purkinje cells in the posterior lateral cerebellum with a region of the prefrontal cortex that is critical in learning visuomotor associations. Together, these results demonstrate a causal role for the primate posterior lateral cerebellum in non-motor, reinforcement learning.


Assuntos
Cerebelo , Aprendizagem , Animais , Masculino , Cerebelo/fisiologia , Aprendizagem/fisiologia , Células de Purkinje , Córtex Pré-Frontal , Primatas
3.
Alzheimers Dement (N Y) ; 9(3): e12417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614242

RESUMO

Introduction: Our limited understanding of the mechanisms that trigger the emergence of Alzheimer's disease (AD) has contributed to the lack of interventions that stop, prevent, or fully treat this disease. We believe that the development of a non-human primate model of AD will be an essential step toward overcoming limitations of other model systems and is crucial for investigating primate-specific mechanisms underlying the cellular and molecular root causes of the pathogenesis and progression of AD. Methods: A new consortium has been established with funding support from the National Institute on Aging aimed at the generation, characterization, and validation of Marmosets As Research Models of AD (MARMO-AD). This consortium will study gene-edited marmoset models carrying genetic risk for AD and wild-type genetically diverse aging marmosets from birth throughout their lifespan, using non-invasive longitudinal assessments. These include characterizing the genetic, molecular, functional, behavioral, cognitive, and pathological features of aging and AD. Results: The consortium successfully generated viable founders carrying PSEN1 mutations in C410Y and A426P using CRISPR/Cas9 approaches, with germline transmission demonstrated in the C410Y line. Longitudinal characterization of these models, their germline offspring, and normal aging outbred marmosets is ongoing. All data and resources from this consortium will be shared with the greater AD research community. Discussion: By establishing marmoset models of AD, we will be able to investigate primate-specific cellular and molecular root causes that underlie the pathogenesis and progression of AD, overcome limitations of other model organisms, and support future translational studies to accelerate the pace of bringing therapies to patients.

4.
Proc Natl Acad Sci U S A ; 119(19): e2122345119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507879

RESUMO

Marmosets display remarkable vocal motor abilities. Macaques do not. What is it about the marmoset brain that enables its skill in the vocal domain? We examined the cortical control of a laryngeal muscle that is essential for vocalization in both species. We found that, in both monkeys, multiple premotor areas in the frontal lobe along with the primary motor cortex (M1) are major sources of disynaptic drive to laryngeal motoneurons. Two of the premotor areas, ventral area 6 (area 6V) and the supplementary motor area (SMA), are a substantially larger source of descending output in marmosets. We propose that the enhanced vocal motor skills of marmosets are due, in part, to the expansion of descending output from these premotor areas.


Assuntos
Córtex Motor , Vocalização Animal , Animais , Mapeamento Encefálico , Haplorrinos , Músculos Laríngeos , Córtex Motor/fisiologia
5.
Annu Rev Neurosci ; 44: 425-447, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863253

RESUMO

What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to (a) major organizational changes in the primary motor cortex and (b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere.


Assuntos
Córtex Motor , Animais , Destreza Motora , Movimento
6.
Sci Adv ; 6(34)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937371

RESUMO

Even the simplest movements are generated by a remarkably complex pattern of muscle activity. Fast, accurate movements at a single joint are produced by a stereotyped pattern that includes a decrease in any preexisting activity in antagonist muscles. This premovement suppression is necessary to prevent the antagonist muscle from opposing movement generated by the agonist muscle. Here, we provide evidence that the primary motor cortex (M1) sends a command signal that generates this premovement suppression. Thus, output neurons in M1 sculpt complex spatiotemporal patterns of motor output not only by actively turning on muscles but also by actively turning them off.

7.
Proc Natl Acad Sci U S A ; 117(23): 13078-13083, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434910

RESUMO

The central nervous system both influences and is influenced by the gastrointestinal system. Most research on this gut-brain connection has focused on how ascending signals from the gut and its microbiome alter brain function. Less attention has focused on how descending signals from the central nervous system alter gut function. Here, we used retrograde transneuronal transport of rabies virus to identify the cortical areas that most directly influence parasympathetic and sympathetic control of the rat stomach. Cortical neurons that influence parasympathetic output to the stomach originated from the rostral insula and portions of medial prefrontal cortex, regions that are associated with interoception and emotional control. In contrast, cortical neurons that influence sympathetic output to the stomach originated overwhelmingly from the primary motor cortex, primary somatosensory cortex, and secondary motor cortex, regions that are linked to skeletomotor control and action. Clearly, the two limbs of autonomic control over the stomach are influenced by distinct cortical networks.


Assuntos
Córtex Cerebral/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Estômago/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Mapeamento Encefálico , Masculino , Vias Neurais/fisiologia , Ratos , Estômago/inervação
8.
Proc Natl Acad Sci U S A ; 116(52): 26321-26328, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31871146

RESUMO

Which regions of the cerebral cortex are the origin of descending commands that influence internal organs? We used transneuronal transport of rabies virus in monkeys and rats to identify regions of cerebral cortex that have multisynaptic connections with a major sympathetic effector, the adrenal medulla. In rats, we also examined multisynaptic connections with the kidney. In monkeys, the cortical influence over the adrenal medulla originates from 3 distinct networks that are involved in movement, cognition, and affect. Each of these networks has a human equivalent. The largest influence originates from a motor network that includes all 7 motor areas in the frontal lobe. These motor areas are involved in all aspects of skeletomotor control, from response selection to motor preparation and movement execution. The motor areas provide a link between body movement and the modulation of stress. The cognitive and affective networks are located in regions of cingulate cortex. They provide a link between how we think and feel and the function of the adrenal medulla. Together, the 3 networks can mediate the effects of stress and depression on organ function and provide a concrete neural substrate for some psychosomatic illnesses. In rats, cortical influences over the adrenal medulla and the kidney originate mainly from 2 motor areas and adjacent somatosensory cortex. The cognitive and affective networks, present in monkeys, are largely absent in rats. Thus, nonhuman primate research is essential to understand the neural substrate that links cognition and affect to the function of internal organs.

9.
Neuron ; 104(6): 1056-1064.e3, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31708306

RESUMO

Three-dimensional documentation of the axonal pathways connecting gray matter components of the human brain has wide-ranging scientific and clinical applications. Recent attempts to map human structural connectomes have concentrated on using tractography results derived from diffusion-weighted imaging data, but tractography is an indirect method with numerous limitations. Advances in holographic visualization platforms provide a new medium to integrate anatomical data, as well as a novel working environment for collaborative interaction between neuroanatomists and brain-imaging scientists. Therefore, we developed the first holographic interface for building axonal pathways, populated it with human histological and structural MRI data, and assembled world expert neuroanatomists to interactively define axonal trajectories of the cortical, basal ganglia, and cerebellar systems. This blending of advanced visualization hardware, software development, and neuroanatomy data enabled the translation of decades of amassed knowledge into a human axonal pathway atlas that can be applied to educational, scientific, or clinical investigations.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Holografia/métodos , Vias Neurais/anatomia & histologia , Humanos , Neuroimagem/métodos
10.
Nat Rev Neurosci ; 19(6): 338-350, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29643480

RESUMO

The basal ganglia and the cerebellum are considered to be distinct subcortical systems that perform unique functional operations. The outputs of the basal ganglia and the cerebellum influence many of the same cortical areas but do so by projecting to distinct thalamic nuclei. As a consequence, the two subcortical systems were thought to be independent and to communicate only at the level of the cerebral cortex. Here, we review recent data showing that the basal ganglia and the cerebellum are interconnected at the subcortical level. The subthalamic nucleus in the basal ganglia is the source of a dense disynaptic projection to the cerebellar cortex. Similarly, the dentate nucleus in the cerebellum is the source of a dense disynaptic projection to the striatum. These observations lead to a new functional perspective that the basal ganglia, the cerebellum and the cerebral cortex form an integrated network. This network is topographically organized so that the motor, cognitive and affective territories of each node in the network are interconnected. This perspective explains how synaptic modifications or abnormal activity at one node can have network-wide effects. A future challenge is to define how the unique learning mechanisms at each network node interact to improve performance.


Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Animais , Gânglios da Base/anatomia & histologia , Cerebelo/anatomia & histologia , Humanos , Modelos Neurológicos , Motivação , Doenças do Sistema Nervoso/fisiopatologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Recompensa , Núcleo Subtalâmico/anatomia & histologia , Núcleo Subtalâmico/fisiologia , Tálamo/anatomia & histologia , Tálamo/fisiologia
11.
Prog Neurol Surg ; 33: 50-61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332073

RESUMO

The neural connections of the basal ganglia provide important insights into their function. Here, we discuss the current perspective on basal ganglia connections with the cerebral cortex and with the cerebellum. We review the evidence that the basal ganglia participate in functionally segregated circuits with motor and non-motor areas of the cerebral cortex. We then discuss the data that the basal ganglia are interconnected with the cerebellum. These results provide the anatomical substrate for basal ganglia contributions not only to the control of movement, but also to a variety of cognitive and affective functions. Furthermore, these findings indicate that abnormal activity in basal ganglia circuits with the cerebral cortex and with the cerebellum may contribute to both motor and non-motor deficits associated with several neurologic and psychiatric conditions.


Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Transtornos dos Movimentos/fisiopatologia , Movimento/fisiologia , Vias Neurais/fisiologia , Gânglios da Base/fisiopatologia , Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Humanos , Vias Neurais/fisiopatologia
12.
Neuroscience ; 368: 171-186, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28958919

RESUMO

The rodent facial nucleus (FN) comprises motoneurons (MNs) that control the facial musculature. In the lateral part of the FN, populations of vibrissal motoneurons (vMNs) innervate two groups of muscles that generate movements of the whiskers. Vibrissal MNs thus represent the terminal point of the neuronal networks that generate rhythmic whisking during exploratory behaviors and that modify whisker movements based on sensory-motor feedback during tactile-based perception. Here, we combined retrograde tracer injections into whisker-specific muscles, with large-scale immunohistochemistry and digital reconstructions to generate an average model of the rat FN. The model incorporates measurements of the FN geometry, its cellular organization and a whisker row-specific map formed by vMNs. Furthermore, the model provides a digital 3D reference frame that allows registering structural data - obtained across scales and animals - into a common coordinate system with a precision of ∼60 µm. We illustrate the registration method by injecting replication competent rabies virus into the muscle of a single whisker. Retrograde transport of the virus to vMNs enabled reconstruction of their dendrites. Subsequent trans-synaptic transport enabled mapping the presynaptic neurons of the reconstructed vMNs. Registration of these data to the FN reference frame provides a first account of the morphological and synaptic input variability within a population of vMNs that innervate the same muscle.


Assuntos
Músculos Faciais/fisiologia , Núcleo do Nervo Facial/anatomia & histologia , Núcleo do Nervo Facial/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Vibrissas/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
13.
J Int Neuropsychol Soc ; 23(9-10): 768-777, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29198273

RESUMO

This paper highlights major developments over the past two to three decades in the neuropsychology of movement and its disorders. We focus on studies in healthy individuals and patients, which have identified cognitive contributions to movement control and animal work that has delineated the neural circuitry that makes these interactions possible. We cover advances in three major areas: (1) the neuroanatomical aspects of the "motor" system with an emphasis on multiple parallel circuits that include cortical, corticostriate, and corticocerebellar connections; (2) behavioral paradigms that have enabled an appreciation of the cognitive influences on the preparation and execution of movement; and (3) hemispheric differences (exemplified by limb praxis, motor sequencing, and motor learning). Finally, we discuss the clinical implications of this work, and make suggestions for future research in this area. (JINS, 2017, 23, 768-777).


Assuntos
Encéfalo/patologia , Transtornos Cognitivos/etiologia , Transtornos dos Movimentos , Movimento/fisiologia , Neuropsicologia , Humanos , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/psicologia
14.
PLoS One ; 12(7): e0180486, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686653

RESUMO

Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.


Assuntos
Encéfalo/diagnóstico por imagem , Vírus da Encefalite Equina Venezuelana/patogenicidade , Encefalomielite Equina Venezuelana/diagnóstico por imagem , Microscopia Confocal/métodos , Animais , Encéfalo/fisiopatologia , Encéfalo/virologia , Callithrix/virologia , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Encefalomielite Equina Venezuelana/diagnóstico , Encefalomielite Equina Venezuelana/fisiopatologia , Encefalomielite Equina Venezuelana/virologia , Humanos , Camundongos , Neuroimagem/métodos , Ratos , Replicação Viral
15.
Proc Natl Acad Sci U S A ; 114(16): 4255-4260, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373554

RESUMO

Mountcastle and colleagues proposed that the posterior parietal cortex contains a "command apparatus" for the operation of the hand in immediate extrapersonal space [Mountcastle et al. (1975) J Neurophysiol 38(4):871-908]. Here we provide three lines of converging evidence that a lateral region within area 5 has corticospinal neurons that are directly linked to the control of hand movements. First, electrical stimulation in a lateral region of area 5 evokes finger and wrist movements. Second, corticospinal neurons in the same region of area 5 terminate at spinal locations that contain last-order interneurons that innervate hand motoneurons. Third, this lateral region of area 5 contains many neurons that make disynaptic connections with hand motoneurons. The disynaptic input to motoneurons from this portion of area 5 is as direct and prominent as that from any of the premotor areas in the frontal lobe. Thus, our results establish that a region within area 5 contains a motor area with corticospinal neurons that could function as a command apparatus for operation of the hand.


Assuntos
Dedos/fisiologia , Mãos/inervação , Neurônios Motores/fisiologia , Movimento/fisiologia , Lobo Parietal/fisiologia , Animais , Estimulação Elétrica , Feminino , Macaca mulatta , Masculino
16.
Cerebellum ; 16(2): 577-594, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27734238

RESUMO

A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.


Assuntos
Cerebelo/fisiopatologia , Distonia/fisiopatologia , Animais , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Distonia/diagnóstico por imagem , Distonia/patologia , Humanos , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia
17.
Cerebellum ; 16(1): 203-229, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26873754

RESUMO

Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.


Assuntos
Gânglios da Base/fisiologia , Gânglios da Base/fisiopatologia , Cerebelo/fisiologia , Cerebelo/fisiopatologia , Córtex Cerebral/fisiologia , Córtex Cerebral/fisiopatologia , Animais , Consenso , Humanos , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia
18.
Proc Natl Acad Sci U S A ; 113(35): 9922-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528671

RESUMO

Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness.


Assuntos
Medula Suprarrenal/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Córtex Motor/fisiologia , Medula Suprarrenal/virologia , Animais , Transporte Biológico , Cebus , Córtex Cerebral/virologia , Feminino , Giro do Cíngulo/fisiologia , Giro do Cíngulo/virologia , Humanos , Masculino , Córtex Motor/virologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/virologia , Vias Neurais/fisiologia , Vias Neurais/virologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/virologia , Raiva/virologia , Vírus da Raiva/fisiologia
19.
J Neurosci ; 36(6): 1971-6, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865620

RESUMO

As skill on a sequence of movements is acquired through practice, each movement in the sequence becomes seamlessly associated with another. To study the neural basis of acquired skills, we trained two monkeys (Cebus apella) to perform two sequential reaching tasks. In one task, sequential movements were instructed by visual cues, whereas in the other task, movements were generated from memory after extended practice. Then, we examined neural activity in the dorsal premotor area (PMd) and the effects of its local inactivation during performance of each task. Comparable numbers of neurons in the PMd were active during the two tasks. However, inactivation of the PMd had a marked effect only on the performance of sequential movements that were guided by memory. These results emphasize the importance of the PMd in the internal generation of sequential movements, perhaps through maintaining arbitrary motor-motor associations. SIGNIFICANCE STATEMENT: The dorsal premotor cortex (PMd) has long been thought to be a critical node in the cortical networks responsible for visually guided reaching. Here we show that PMd neurons are active during both visually guided and internally generated sequential movements. In addition, we found that local inactivation of the PMd has a marked effect only on the performance of sequential movements that were internally generated. These observations suggest that, although the PMd may participate in the generation of visually guided sequences, it is more important for the generation of internally guided sequences.


Assuntos
Córtex Motor/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Cebus , Sinais (Psicologia) , Estimulação Elétrica , Feminino , Agonistas GABAérgicos/farmacologia , Masculino , Memória/fisiologia , Córtex Motor/citologia , Córtex Motor/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Muscimol/farmacologia , Neurônios/efeitos dos fármacos , Estimulação Luminosa , Desempenho Psicomotor/efeitos dos fármacos
20.
Science ; 350(6261): 667-70, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542568

RESUMO

Corticomotoneuronal (CM) cells in the primary motor cortex (M1) have monosynaptic connections with motoneurons. They are one of the few sources of descending commands that directly influence motor output. We examined the contribution of CM cells to the generation of activity in their target muscles. The preferred direction of many CM cells differed from that of their target muscles. Some CM cells were selectively active when a muscle was used as an agonist. Others were selectively active when the same muscle was used as a synergist, fixator, or antagonist. These observations suggest that the different functional uses of a muscle are generated by separate populations of CM cells. We propose that muscle function is one of the dimensions represented in the output of M1.


Assuntos
Mãos/fisiologia , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Animais , Mãos/inervação , Haplorrinos , Córtex Motor/citologia , Neurônios Motores/citologia , Movimento/fisiologia , Músculo Esquelético/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...